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Abstract

Let G be a simple graph and χ′(G) be the chromatic index of G. We call G a
∆-critical graph if χ′(G) = ∆(G) + 1 and χ′(H) ≤ ∆(G) for every proper subgraph H
of G, where ∆(G) is the maximum degree of G. Let e = xy be an edge of G and ϕ be
an edge ∆(G)-coloring of G− e. An e-fan is a sequence F e = (x, e, y, e1, z1, . . . , ep, zp)
of alternating vertices and distinct edges such that edge ei is incident with x or y,
zi is another endvertex of ei and ϕ(ei) is missing at a vertex before zi for each i
with 1 ≤ i ≤ p. We prove that if min{d(x), d(y)} ≤ ∆(G) − 1, where d(x) and d(y)
respectively denote the degrees of vertices x and y, then colors missing at different
vertices of V (F e) are distinct. Clearly, a Vizing fan is an e-fan with the restricting
that all edges ei being incident with one fixed endvertex of edge e.

This result gives a common generalization of several recently developed new results
on multi-fan, double fan, Kierstead path of four vertices, and broom. By treating some
colors of edges incident with vertices of low degrees as missing colors, Kostochka and
Stiebitz introduced C-fan. We also generalize C-fans from centered at one vertex to
one edge.
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1 Introduction

Our results in this paper are on simple graphs, but we will mention some definitions and
results on multigraphs. Denote by V (G) and E(G) the vertex set and the edge set of a
(multi)-graph G, respectively; and by [k] the set of first k consecutive positive integers. We
will generally follow the book [?] of Stiebitz et al. for notation and terminology. The edge
k-coloring of a (multi)-graph G is a mapping from E(G) to [k] such that distinct adjacent
edges have different values. Denote by Ck(G) the set of all edge k-colorings of G. The
minimum number k, denoted by χ′(G), such that Ck(G) 6= ∅ is called the chromatic index
of G. An edge e is critical if χ′(G − e) = χ′(G) − 1; and a (multi)-graph G is k-critical if
χ′(G) = k + 1 and χ′(H) ≤ k for every proper subgraph H of G. Vizing [?, ?] and Gupta
[?] independently proved that ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G), where ∆(G) and µ(G) are
maximum degree and multiplicity of G, respectively. When G is a simple graph, we have
χ′(G) = ∆(G) or ∆(G) + 1, and so simple graphs are divided into two families: class one
and class two accordingly. A critical class two graph is called a ∆-critical graph.

Let e be an edge of a k-critical (multi)-graph G and ϕ ∈ Ck(G−e). For a vertex v ∈ V (G),
let ϕ(v) denote the set of colors assigned to edges incident with v, and ϕ(v) = [k] − ϕ(v),
i.e., the set of colors not assigned to any edge incident with v. We call ϕ(v) the set of colors
present at v and ϕ(v) the set of colors missing at v. Clearly, |ϕ(v)|+|ϕ(v)| = k for each vertex
v ∈ V (G). A vertex set X ⊆ V (G) is ϕ-elementary, or simply elementary, if ϕ(x)∩ϕ(y) = ∅
for every pair of two distinct vertices x, y ∈ X. If V (G) is ϕ-elementary, then each color
is missing at exact one vertex of G. So n = |V (G)| is odd and |E(G)| = 1

2
k(n − 1) + 1;

and G is called overfull in this case. Recently, Chen et al. [?] proved the Goldberg-Seymour
conjecture that if G is a k-critical multigraph with k ≥ ∆(G)+1, then for every edge e there
exists a coloring ϕ ∈ Ck(G−e) such that V (G) is ϕ-elementary, which is equivalent to that G
is overfull. Consequently, V (G) is elementary for every edge k-coloring of G− e. This result
gives a complete characterization for critical multigraphs G with chromatic index at least
∆(G) + 2. However, characterizing elementary sets for k-critical graphs with k = ∆(G), in
particular, ∆-critical simple graphs, is an interesting yet challenging problem in graph edge
coloring.

Let G be a ∆-critical graph, e ∈ E(G) and ϕ ∈ C∆(G − e). We in general do not know
much about the largest ϕ-elementary sets except the following three outstanding conjectures.
Hilton’s overfull conjecture [?, ?]: V (G) is ϕ-elementary if ∆(G) > |V (G)|/3; Seymour’s
exact conjecture [?]: V (G) is ϕ-elementary if G is a planar graph; and Hilton and Zhao’s
core conjecture [?]: V (G) is ϕ-elementary if the core G∆ has maximum degree at most 2,
where G∆, named the core of G, is the subgraph of G induced by all maximum degree
vertices. Cao et al. [?] recently confirmed Hilton and Zhao’s core conjecture. The other two
of these three conjectures are remaining wild open. Vizing [?, ?] showed that the vertex set
of every Vizing fan is elementary. Almost all known techniques in studying edge chromatic
problems are built on the elementary properties of Vizing fans and its generalizations. In [?],
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Stiebitz et al. gave a survey, up to that time, of the work in this direction. We will give a
common generalization of these results. For x, y ∈ V (G), let EG(x, y) denote the set of all
edges of G joining vertices x and y.

Definition 1.1 (Tashkinov Tree). Let G be a k-critical (multi)-graph, e ∈ EG(x, y) and
ϕ ∈ Ck(G−e) for some integer k ≥ 0. A sequence T = (x, e, y, e1, z1, . . . , ep, zp) of alternating
distinct vertices and distinct edges is called a Tashkinov tree if for each i ∈ [p], ei is incident
with zi and satisfies the following two conditions.

T1. The other endvertex of ei is in {x, y, z1, . . . , zi−1}.

T2. ϕ(ei) ∈ ϕ(x) ∪ ϕ(y) ∪ ϕ(zh) for some h ∈ [i− 1].

Tashkinov trees are given by Tashkinov in [?], where he proved that if G is a k-critical
multigraph with k ≥ ∆(G) + 1, e ∈ E(G) and ϕ ∈ Ck(G − e), then the vertex set of every
Tashkinov tree is ϕ-elementary. Clearly, each Tashkinov tree is indeed a tree. We in the
following notice that Vizing fans and some other well-studied subgraphs are special classes
of Tashkinov trees.

1. If we restrict in T1, each ei is incident with x and in T2 h = i− 1, then T is a Vizing
fan.

2. If we only impose the above restriction to T1, then T is a multi-fan introduced by
Stiebitz et al. [?].

3. If we restrict in T1, e1 is incident with y and ei is incident with zi−1 for each i ≥ 2,
then T is a Kierstead path [?].

4. If we restrict in T1, p ≥ 2 and each ei with i ≥ 2 is incident with z1, then T is a broom
defined in [?, ?].

We notice that not every vertex set of Tashkinov tree is elementary. Let P ∗ be obtained
from the Petersen graph by deleting a vertex. It is not difficult to verify that P ∗ is a 3-
critical graph, but there exist an edge e and a coloring ϕ ∈ C3(P ∗ − e), such that the vertex
set of a Kierstead path with 4 vertices is not elementary. For u ∈ V (G), let d(u) denote
the degree of vertex u in G. By imposing degree condition min{d(y), d(z1)} ≤ ∆(G) − 1,
Stiebitz and Kostachka [?] and Luo and Zhao [?] showed that the vertex set of each Kierstead
path (x, e, y, e1, z1, e2, z2) is elementary. The result has been extended to brooms [?, ?]. We
generalize these results to a much broader class of Tashkinov trees in this paper.
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Definition 1.2 (e-fan). Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e).
A Tashkinov tree F e = (x, e, y, e1, z1, . . . , ep, zp) is a simple e-fan if in T1 we additionally
require each ei is only incident with x or y i.e., ei = xzi or ei = yzi. Furthermore, in the
above definition of simple e-fan if we relax the condition that each zi is distinct by allowing
it with possibility to be repeated one more time, say zi = zj = z with i 6= j, i.e., edges xz
and yz can appear in F e, then F e is called an e-fan.

Clearly, a multi-fan is an e-fan in simple graphs. Moreover, if Fx and Fy are two multi-fans
centered at x and y, respectively, then Fx∪Fy, named a double fan, is also an e-fan. The below
Theorem 1.3 shows that the vertex set of every e-fan provided min{d(x), d(y)} ≤ ∆(G)− 1
is elementary, which is one of the two main results of this paper. We will give its proof
in Section 4, in which it is worth mentioning that we first prove the vertex set of some
special subsequence (will be called linear e-sequence) is elementary, then generalize to any
two special subsequences and finally to the entire e-fan. Actually, a Vizing fan is such a
special subsequence centered at one vertex in a multi-fan, so one can also use our above
method to prove the vertex set of every multi-fan is elementary.

Theorem 1.3. Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). If
min{d(x), d(y)} ≤ ∆(G)− 1, then V (F e) is ϕ-elementary for every e-fan F e. Furthermore,
if F e is maximal, i.e., there is no e-fan containing F e as a proper subsequence, then

d(x) + d(y)− 2∆ +
∑

z∈V (F e)\{x,y}

(2d(z) + µF e(x, z) + µF e(y, z)− 2∆) = 2,

where µF e(x, z) and µF e(y, z) taking value 0 or 1 are the number of edges between x and z
and between y and z in F e, respectively.

We notice that Theorem 1.3 immediately gives that all vertex sets of Vizing fans, multi-
fans, and double fans provided min{d(x), d(y)} ≤ ∆(G)− 1 are respectively elementary. We
also notice a few applications below.

Corollary 1.4 (Kostachka and Stiebitz [?], and Luo and Zhao [?]). Let G be a ∆-critical
graph, e = xy ∈ E(G) and ϕ ∈ C∆(G−e). For any Kierstead path K = (x, e, y, e1, z1, e2, z2),
if min{d(y), d(z1)} ≤ ∆(G)− 1, then V (K) is ϕ-elementary.

Proof. Let ϕ′ be obtained from ϕ ∈ C∆(G − e) by uncoloring e1 and coloring e with color
ϕ(e1). Since ϕ(e1) ∈ ϕ(x), ϕ′ is an edge ∆(G)-coloring of G − e1. Moreover, since ϕ′(e) ∈
ϕ(z1) and ϕ′(e2) ∈ ϕ′(x)∪ϕ′(y), F e = (y, e1, z1, e, x, e2, z2) is an e-fan with respect to e1 and
ϕ′. By Theorem 1.3, V (F e) = V (K) is ϕ′-elementary, and so ϕ-elementary.

Using the same trick in the above proof, we get the following more general result.

Corollary 1.5 (Cao, Chen, Jing, Stiebitz and Toft [?]). Let G be a ∆-critical graph, e = xy ∈
E(G) and ϕ ∈ C∆(G−e). For any broom B = (x, e, y, e1, z1, . . . , ep, zp), if min{d(y), d(z1)} ≤
∆(G)− 1, then V (B) is ϕ-elementary.
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2 Adding colors of edges incident with vertices with

small degrees to missing color sets

In this section we will consider some extensions of the missing color set at a vertex and
some more generally elementary properties and structures. Starting with Vizing’s classic
results [?, ?], missing colors have played a crucial role in revealing properties of critical
graphs. Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). Woodall [?, ?]
treated colors ϕ(yz) as a missing color in ϕ(y) if d(z) is “small”. This technique was used
in [?, ?, ?, ?] in their work on Vizing’s average degree conjecture and hamiltonian property
of ∆-critical graphs. For a vertex v ∈ V (G), let

ϕsx(v) = {ϕ(vw) : w 6= x and d(w) ≤ 1

2
(∆(G)− d(x))} and ,

Cϕ,x(v) = ϕ(v) ∪ ϕsx(v).

Similarly, we define ϕsy(v) and Cϕ,y(v). Since d(x) + d(w) ≥ ∆(G) + 2 for every neighbor w
of x [?], we have ϕsx(x) = ∅, i.e., Cϕ,x(x) = ϕ(x). Similarly, ϕsy(y) = ∅, i.e., Cϕ,y(y) = ϕ(y).
Incorporating this idea, Kostochka and Stiebitz [?] extended multi-fan as follows. A sequence
F c = (x, e, y, e1, z1, . . . , ep, zp) of alternating distinct vertices and distinct edges is called a
C-fan if V (F c) induces a star centered at x, and for each i ≥ 1, there exists a h with
0 ≤ h ≤ i − 1 such that ϕ(ei) ∈ Cϕ,x(zh), where z0 = y. The set V (F c) is called ϕc-
elementary if Cϕ,x(zi) ∩ Cϕ,x(zj) = ∅ for every two distinct vertices zi, zj in V (F c), where
0 ≤ i < j ≤ p and z0 ∈ {x, y}.

Theorem 2.1 (Kostochka and Stiebitz [?]). Let G be ∆-critical graph, e ∈ E(G) and
ϕ ∈ C∆(G− e). Then V (F c) is ϕc-elementary for every C-fan F c.

Definition 2.2 (C-e-fan). Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G− e).
A C-e-fan at x and y is a sequence F ce = (x, e, y, e1, z1, . . . , ep, zp) of alternating vertices and
edges satisfying the following two conditions.

C1. The edges e, e1, . . . , ep are distinct with ei = xzi or ei = yzi.

C2. ϕ(ei) ∈ Cϕ,y(x)∪Cϕ,x(y)∪Cϕ,w(eh)(zh) for some h ∈ [i−1], where w(eh) is the endvertex
of eh in {x, y}.

Since each edge ei with i ∈ [p] is incident with x or y, let w(ei) denote this vertex. Note
that some vertices of z1, . . . , zp may appear twice, say zi = zj = z with i 6= j, i.e., edges
xz and yz appear in F ce. In C-e-fan F ce, we define Cϕ(x) = Cϕ,y(x), Cϕ(y) = Cϕ,x(y),
Cϕ(zi) = Cϕ,w(ei)(zi) for single zi, and Cϕ(z) = Cϕ,w(ei)(zi) ∪ Cϕ,w(ej)(zj) for repeated zi and
zj with zi = zj = z. The set V (F ce) is called ϕce-elementary if Cϕ(u) ∩ Cϕ(v) = ∅ for every
two distinct vertices u, v in V (F ce). The below Theorem 2.3 is the other of the two main
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results of this paper, whose proof will be given in Section 5 and has the similar main idea of
Theorem 1.3 but much more complicated.

Theorem 2.3. Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). For a
C-e-fan F ce = (x, e, y, e1, z1, . . . , ep, zp), if max{d(x), d(y)} ≤ ∆(G) − 1 and the following
condition holds, then V (F ce) is ϕce-elementary.

C3. For any two distinct colors α, β with α ∈ ϕsw(ei)
(zi) and β ∈ ϕsw(ej)(zj) for 1 ≤ i < j ≤ p,

denote by u, v the two vertices, and e′ = ziu and e′′ = zjv the two edges such that ϕ(e′) = α
and ϕ(e′′) = β, then we have u 6= v.

Furthermore, if F ce is maximal, i.e., there is no C-e-fan containing F ce as a proper
subsequence, then the following equation holds.

|Cϕ(x)|+ |Cϕ(y)| =
∑

z∈V (F ce)\{x,y}

(µF ce(x, z) + µF ce(y, z)− 2|Cϕ(z)|),

where µF ce(x, z) and µF ce(y, z) taking value 0 or 1 are the number of edges between x and z
and between y and z in F ce, respectively.

3 Notation and Lemmas

Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). For a color α ∈ [∆], let
Eϕ,α(G) denote the set of edges colored with α. Let α, β ∈ [∆] be two distinct colors and H
be the spanning subgraph induced by Eϕ,α(G) and Eϕ,β(G). Clearly, every component of H
is either a path or an even cycle which are referred as (α, β)-chains of G. If we interchange
the colors α and β on (α, β)-chain C, then we obtain a new edge ∆-coloring of G, wrote by
ϕ/C, which is also in C∆(G − e). This operation is called a Kempe change. Furthermore,
we say that a chain C has endvertices u and v if C is a path joining vertices u and v. For a
vertex v of G, we denote by Pv(α, β, ϕ) the unique (α, β)-chain containing the vertex v. For
two vertices u, v ∈ V (G), the two chains Pu(α, β, ϕ) and Pv(α, β, ϕ) are either identical or
disjoint.

Lemma 3.1. [?] Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). And
let F = (x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x, where y0 = y. Then the following
statements hold.

(a) V (F ) is elementary.

(b) If α ∈ ϕ(x) and β ∈ ϕ(yi) for 0 ≤ i ≤ p, then Px(α, β, ϕ) = Pyi(α, β, ϕ).
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The following lemma is a simple corollary of Lemma 3.1.

Lemma 3.2. [?] Let G be a ∆-critical graph. Then for any edge e = xy ∈ E(G) and
ϕ ∈ C∆(G− e), we have d(x) + d(y) ≥ ∆ + 2.

Lemma 3.3. [?] Let G be a ∆-critical graph, e = xy ∈ E(G) and ϕ ∈ C∆(G − e). And let
F c = (x, e, y0, e1, y1, . . . , ep, yp) be a C-fan at x, where y0 = y. Then the following statements
hold.

(a) V (F c) is ϕc-elementary, i.e., Cϕ,x(x)∩Cϕ,x(yi) = ∅ for i = 0, 1, . . . , p, and Cϕ,x(yi)∩
Cϕ,x(yj) = ∅ for 0 ≤ i < j ≤ p.

(b) If α ∈ Cϕ,x(x) and β ∈ Cϕ,x(yi) for 0 ≤ i ≤ p, then Px(α, β, ϕ) = Pyi(α, β, ϕ).

In a ∆-critical graph G with e = xy ∈ E(G), a vertex u is called a small vertex with

respect to x (with respect to y, respectively) if d(u) ≤ ∆−d(x)
2

(d(u) ≤ ∆−d(y)
2

, respectively).
We list the following simple facts [?].

Lemma 3.4. In a ∆-critical graph G with e = xy ∈ E(G), for any small vertices u, v with
respect to x (with respect to y, respectively), we have |ϕ(x)∩ϕ(u)∩ϕ(v)| ≥ 1 (|ϕ(y)∩ϕ(u)∩
ϕ(v)| ≥ 1, respectively). In particular, provided d(x) ≤ d(y), no matter u and v are small
vertices with respect to x or y, then we have |ϕ(x) ∩ ϕ(u) ∩ ϕ(v)| ≥ 1. Furthermore, if
d(x) ≤ ∆(G)−1 and u is a small vertex with respect to x (d(y) ≤ ∆(G)−1 and u is a small
vertex with respect to y, respectively), then we have |ϕ(x) ∩ ϕ(u)| ≥ 2 (|ϕ(y) ∩ ϕ(u)| ≥ 2,
respectively).

4 Proof of Theorem 1.3

In a simple e-fan F e = (x, e, y, e1, z1, . . . , ep, zp), a linear e-sequence is a subsequence (x, e, y,
el1 , zl1 , . . . , els , zls) with 1 ≤ l1 < l2 < · · · < ls ≤ p such that ϕ(el1) ∈ ϕ(x) ∪ ϕ(y) and
ϕ(eli) ∈ ϕ(zli−1

) for 2 ≤ i ≤ s. Specifically, a linear e-sequence is a x-generated e-sequence if
ϕ(el1) ∈ ϕ(x), or a y-generated e-sequence if ϕ(el1) ∈ ϕ(y).

Proof. In the e-fan F e = (x, e, y, e1, z1, . . . , ep, zp), if zi = zj with 1 ≤ i < j ≤ p, we delete
the edge ej and the vertex zj from F e. By the definition of e-fan, one can easily check that
the remaining sequence is still an e-fan. Repeat the above operation. Finally, we get a simple
e-fan F ′e with respect to the e-fan F e. Obviously, V (F e) = V (F ′e). Hence, we may assume
that the original e-fan F e is a simple e-fan. We show the following two claims.

Claim 1. The vertex set of any linear e-sequence is elementary.
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Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ϕ such that there
exists a y-generated e-sequence Sy = (x, el0 , y, el1 , zl1 , . . . , els , zls) with el0 = e, whose vertex
set is not elementary with s as small as possible. Note that el1 = xzl1 . Let ϕ(el1) = βl1 ∈ ϕ(y)
and ϕ(eli) = βli ∈ ϕ(zli−1

) for 2 ≤ i ≤ s.

If s ≤ 1, then Sy is a Vizing fan at x, which has elementary vertex set by Lemma 3.1.
We assume s ≥ 2. By the minimality of s, V (Sy)\{zls} is elementary. Together with the
definition of y-generated e-sequence, we have that for any color γ1 ∈ ϕ(x), no edge in E(Sy)
is colored with γ1; for any color γ2, if γ2 ∈ ϕ(y) or γ2 ∈ ϕ(zli) for 1 ≤ i ≤ s−1, then only the
edge el1 or eli+1

in E(Sy) may be colored with γ2. We will use above facts about Sy without
explicit mention. The following observation will also be used very often.

I. For any two colors γ1 ∈ ϕ(x) and γ2 ∈ ϕ(zli) with 1 ≤ i ≤ s− 1, we have γ1 6= γ2 and
Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ).

Proof. Recall that V (Sy)\{zls} is elementary. We easily have γ1 6= γ2. Suppose Px(γ1, γ2, ϕ) 6=
Pzli (γ1, γ2, ϕ). For the path Pzli (γ1, γ2, ϕ), one endvertex is zli and the other endvertex
is some vertex z′ 6= x. Note that z′ /∈ {y, zl1 , . . . , zli−1

} and none of el1 , . . . , eli is col-
ored with γ1 or γ2. Hence, the coloring ϕ′ = ϕ/Pzli (γ1, γ2, ϕ) satisfies ϕ′(elj) = ϕ(elj)
for each j ∈ [i], ϕ′(x) = ϕ(x), ϕ′(y) = ϕ(y), ϕ′(zlj) = ϕ(zlj) for each j ∈ [i − 1] and
ϕ′(zli) = (ϕ(zli)\{γ2}) ∪ {γ1}. Consequently, the coloring ϕ′ results in a new y-generated
e-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ′(zli)∩ϕ′(x), contradicting the min-
imality of s. This completes the proof of the observation I.

Subclaim 1.1. We may assume that ϕ(zls) ∩ ϕ(x) 6= ∅.

Proof. Since V (Sy) is not elementary, and by the minimality of s, there exists a color η ∈
ϕ(zls) ∩ ϕ({x, y, zl1 , . . . , zls−1}). If η ∈ ϕ(zls) ∩ ϕ(x), then we are done. Otherwise, we
have ϕ(zls) ∩ ϕ(x) = ∅ and η ∈ ϕ(zls) ∩ ϕ({y, zl1 , . . . , zls−1}) i.e., η ∈ ϕ(zls) ∩ ϕ(y) or
η ∈ ϕ(zls) ∩ ϕ({zl1 , . . . , zls−1}). By the definition of Sy, we have η 6= βls ∈ ϕ(zls−1). Let
α ∈ ϕ(x). Since ϕ(zls) ∩ ϕ(x) = ∅, we have α 6= η and α ∈ ϕ(zls). Note that if η ∈ ϕ(y),
then Px(α, η, ϕ) = Py(α, η, ϕ) by Lemma 3.1 since Vizing fan (x, el0 , y). Also if η ∈ ϕ(zli),
then Px(α, η, ϕ) = Pzli (α, η, ϕ) for 1 ≤ i ≤ s− 1 by the observation I. Therefore, Px(α, η, ϕ)
and Pzls (α, η, ϕ) are disjoint. For the path P = Pzls (α, η, ϕ), one endvertex is zls and the
other endvertex z′ /∈ V (Sy), and we have Eϕ,α(P ) ∩ E(Sy) = ∅. Note that if η = βl1 ∈ ϕ(y),
then el1 is on Px(α, η, ϕ). To further discuss Eϕ,η(P )∩E(Sy), we consider the following two
cases.

If η = βli+1
and eli+1

is on P for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 2, then we have
Eϕ,η(P ) ∩ E(Sy) = {eli+1

}. Hence, the coloring ϕ1 = ϕ/P satisfies ϕ1(elj) = ϕ(elj) for
j 6= i, ϕ1(eli+1

) = α, ϕ1(x) = ϕ(x), ϕ1(y) = ϕ(y), ϕ1(zlj) = ϕ(zlj) for each j ∈ [s − 1]
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and ϕ1(zls) = (ϕ(zls)\{η}) ∪ {α}. Consequently, the coloring ϕ1 results in a smaller x-
generated e-sequence (x, el0 , y, eli+1

, zli+1
, . . . , els , zls) with α ∈ ϕ1(zls) ∩ ϕ1(x), contradicting

the minimality of s.

If η ∈ ϕ(y), or η 6= βli+1
for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 1, or η = βli+1

and eli+1
is not

on P for η ∈ ϕ(zli) and 1 ≤ i ≤ s − 2, then we have Eϕ,η(P ) ∩ E(Sy) = ∅. Hence, the
coloring ϕ1 = ϕ/P satisfies ϕ1(elj) = ϕ(elj) for each j ∈ [s], ϕ1(x) = ϕ(x), ϕ1(y) = ϕ(y),
ϕ1(zlj) = ϕ(zlj) for each j ∈ [s − 1] and ϕ1(zls) = (ϕ(zls)\{η}) ∪ {α}. Consequently, Sy is
still a y-generated e-sequence with α ∈ ϕ1(zls)∩ϕ1(x), as desired. This completes the proof
of Subclaim 1.1.

By the subclaim above, we assume that there exists a color η ∈ ϕ(zls) ∩ ϕ(x). To reach
contradictions, we consider the following two cases.

Case 1. els = xzls .

Note that ϕ(els) = βls ∈ ϕ(zls−1) and none of el1 , . . . , els−1 is colored with βls or η.
Recolor els with η to obtain a new coloring ϕ1. Thus S ′y = (x, el0 , y, el1 , zl1 , . . . , els−1 , zls−1) is
a new y-generated e-sequence under ϕ1 such that βls ∈ ϕ1(zls−1) ∩ ϕ1(x), contradicting the
minimality of s.

Case 2. els = yzls .

By the observation I, we have Px(η, βls , ϕ) = Pzls−1
(η, βls , ϕ). For the path P = Pzls (η, βls ,

ϕ), one endvertex is zls and the other endvertex z′ /∈ V (Sy), and we have E(P ) ∩ E(Sy) =
{els}. Let ϕ1 = ϕ/P . Hence (x, el0 , y, el1 , zl1 , . . . , els−1 , zls−1) is still a y-generated e-sequence
under ϕ1 whose vertex set is still elementary, and (y, el0 , x, els , zls) is a Vizing fan at y un-
der ϕ1 since ϕ1(els) = η ∈ ϕ1(x). Since min{d(x), d(y)} ≤ ∆ − 1, there exists a missing
color δ ∈ ϕ1(x) ∪ ϕ1(y) such that δ 6= η, βl1 . Suppose δ ∈ ϕ1(x). We have Px(δ, βls , ϕ1) =
Pzls (δ, βls , ϕ1) by Lemma 3.1, since otherwise, the coloring ϕ′ = ϕ1/Pzls (δ, βls , ϕ1) results in
δ ∈ ϕ′(zls) ∩ ϕ′(x), which is a contradiction. But we have Px(δ, βls , ϕ1) = Pzls−1

(δ, βls , ϕ1)

by the observation I, giving a contradiction. Similarly, if δ ∈ ϕ1(y), then Py(δ, βls , ϕ1) =
Pzls (δ, βls , ϕ1) by Lemma 3.1. But Py(δ, βls , ϕ1) = Pzls−1

(δ, βls , ϕ1), also giving a contradic-
tion. This completes the proof of Claim 1.

Claim 2. The union of vertex sets of any two linear e-sequences is elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ϕ such that there
exist two linear e-sequences S1 = (x, e, y, el1 , zl1 , . . . , els , zls) and S2 = (x, e, y, el′1 , zl′1 , . . . , el′s ,
zl′t) whose vertex sets have common missing color with s + t as small as possible, where
s, t ≥ 1. Note that V (S1) and V (S2) are elementary by Claim 1. By the minimality of s+ t,
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we have zls 6= zl′t and there exists a color η ∈ ϕ(zls)∩ϕ(zl′t). Since min{d(x), d(y)} ≤ ∆− 1,
there exists a missing color δ ∈ ϕ(x)∪ϕ(y) such that δ is different from the colors ϕ(el1) and
ϕ(el′1) which are also in ϕ(x)∪ϕ(y). (ϕ(el1) and ϕ(el′1) could be the same color.) Assume δ ∈
ϕ(z0), where z0 ∈ {x, y}. Then Pz0(δ, η, ϕ) = Pzls (δ, η, ϕ), since otherwise, for the coloring
ϕ′ = ϕ/Pzls (δ, η, ϕ), we have S1 is still a linear e-sequence under ϕ′, but δ ∈ ϕ′(z0) ∩ ϕ′(zls),
giving a contradiction to Claim 1. Similarly, we have Pz0(δ, η, ϕ) = Pzl′t

(δ, η, ϕ). Hence z0, zls
and zl′t are endvertices of one (δ, η)-chain, which is a contradiction. This completes the proof
of Claim 2.

Now we are ready to show that V (F e) is elementary. Suppose not. Note that {x, y}
is elementary and each linear e-sequence in F e contains vertices x and y. There exist one
color η and two distinct vertices zi and zj in V (F e) such that η ∈ ϕ(zi) ∩ ϕ(zj), where
0 ≤ i < j ≤ p and z0 ∈ {x, y}. By the definition of simple e-fan, there exist two linear
e-sequences (may not be disjoint) with zi and zj respectively as the last vertex, which is a
contradiction to Claim 1 for i = 0 or a contradiction to Claim 2 for 1 ≤ i ≤ p − 1. This
proves that V (F e) is elementary.

Now we show the “furthermore” part. We assume that F e is maximal. Let the edge
set Γ = {e1, . . . , ep} and the color set Γ′ =

⋃
z∈V (F e) ϕ(z). Note that ϕ(x), ϕ(y) and ϕ(zi)

for each i ∈ [p] are disjoint since V (F e) is elementary. Let Γ∗ = {ϕ(e1), . . . , ϕ(ep)} be a
multiset. We have

p = |Γ| =
∑

z∈V (F e)\{x,y}

(µF e(x, z) + µF e(y, z)) = |Γ∗|. (1)

Now we calculate |Γ∗| in another way. By the definition of e-fan, ϕ(ei) ∈ Γ′ for each i ∈ [p].
By the maximality of F e, for any color α ∈ Γ′, α appears exactly once in Γ∗ if α ∈ ϕ(x)∪ϕ(y).
Otherwise, α appears exactly twice in Γ∗. Thus we have

|Γ∗| = |ϕ(x)|+ |ϕ(y)|+
∑

z∈V (F e)\{x,y}

2|ϕ(z)|. (2)

Combining equations (1) and (2), we prove that

d(x) + d(y)− 2∆ +
∑

z∈V (F e)\{x,y}

(2d(z) + µF e(x, z) + µF e(y, z)− 2∆) = 2,

since ϕ(x) = ∆− d(x) + 1, ϕ(y) = ∆− d(y) + 1 and ϕ(z) = ∆− d(z).

5 Proof of Theorem 2.3

Note that when d(x) 6= d(y) the values of |Cϕ,w(ei)(zi)| and |Cϕ,w(ej)(zj)| may not be equal for
repeated vertices zi = zj with i 6= j in C-e-fan F ce. We define simple C-e-fan if we further
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require that vertices x, y, z1, . . . , zp are distinct except the repeated vertices zi = zj with 1 ≤
i < j ≤ p such that Cϕ,w(ei)(zi) ⊂ Cϕ,w(ej)(zj) in the definition of C-e-fan. In a simple C-e-fan
F ce = (x, e, y, e1, z1, . . . , ep, zp), a linear ce-sequence is a subsequence (x, e, y, el1 , zl1 , . . . , els ,
zls) with 1 ≤ l1 < l2 < · · · < ls ≤ p such that ϕ(el1) ∈ Cϕ,y(x) ∪ Cϕ,x(y) and ϕ(eli) ∈
Cϕ,w(eli−1

)(zli−1
) for 2 ≤ i ≤ s. Specifically, a linear ce-sequence is a x-generated ce-sequence

if ϕ(el1) ∈ Cϕ,y(x), or a y-generated ce-sequence if ϕ(el1) ∈ Cϕ,x(y).

Proof. In the C-e-fan F ce = (x, e, y, e1, z1, . . . , ep, zp), if zi = zj with 1 ≤ i < j ≤ p and
Cϕ,w(ei)(zi) ⊇ Cϕ,w(ej)(zj), we delete the edge ej and the vertex zj from F ce. By the definition
of C-e-fan, one can easily check that the remaining sequence is still a C-e-fan. Repeat the
above operation. Finally, we get a simple C-e-fan F ′ce with respect to the C-e-fan F ce.
Obviously, V (F ce) = V (F ′ce) and the Cϕ(u) in F ce is the same as the Cϕ(u) in F ′ce for each
vertex u. Hence, we may assume that the original C-e-fan F ce is a simple C-e-fan. We show
the following two claims.

Claim 1. The vertex set of any linear ce-sequence is ϕce-elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ϕ such that
there exists a y-generated ce-sequence Sy = (x, el0 , y, el1 , zl1 , . . . , els , zls) with el0 = e, whose
vertex set is not ϕce-elementary with s as small as possible. Note that el1 = xzl1 . Let
ϕ(el1) = βl1 ∈ Cϕ,x(y) and ϕ(eli) = βli ∈ Cϕ,w(eli−1

)(zli−1
) for 2 ≤ i ≤ s. We consider the

following two cases of s.

First we consider the case s ≤ 1. It is easy to see that Sy is a C-fan at x. By the
statement (a) of Lemma 3.3, we have Cϕ,x(x) ∩ Cϕ,x(y) = ∅, Cϕ,x(x) ∩ Cϕ,x(zl1) = ∅ and
Cϕ,x(y) ∩ Cϕ,x(zl1) = ∅. Recall that Cϕ,x(x) = ϕ(x). Since we suppose that Claim 1 is false,
there are four subcases left to consider.

If there exists η ∈ ϕsy(x)∩ϕ(y), then it contradicts Lemma 3.3 since C-fan (y, el0 , x) at y.
If there exists η ∈ ϕsy(x)∩ϕsx(y), then there is an edge e′ = xu such that u 6= y, ϕ(e′) = η and

d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = yv such that v 6= x, ϕ(e′′) = η and d(v) ≤ ∆−d(x)
2

.
Obviously, u 6= v. Recall that max{d(x), d(y)} ≤ ∆ − 1. It follows from Lemma 3.4 that
there are two colors δ1 ∈ ϕ(x) ∩ ϕ(v) and δ2 ∈ ϕ(y) ∩ ϕ(u) with δ2 6= βl1 . We have δ1 6= δ2

and Px(δ1, δ2, ϕ) = Py(δ1, δ2, ϕ) by Lemma 3.1 since Vizing fan (x, el0 , y). Do Kempe changes
on Pu(δ1, δ2, ϕ) and Pv(δ1, δ2, ϕ) to get a new coloring ϕ1 such that δ1 ∈ ϕ1(x) ∩ ϕ1(u) and
δ2 ∈ ϕ1(y)∩ϕ1(v). Recolor the edge e′ with δ1 and the edge e′′ with δ2 to get a new coloring
ϕ2 such that η ∈ ϕ2(x)∩ϕ2(y). Now by coloring the edge e with η, we color the entire graph
G with ∆ colors, which contradicts the fact that χ′(G) = ∆ + 1.

If there exists η ∈ ϕsy(x)∩ϕ(zl1), then there is an edge e′ = xu such that u 6= y, ϕ(e′) = η

and d(u) ≤ ∆−d(y)
2

. Since max{d(x), d(y)} ≤ ∆− 1, it follows from Lemma 3.4 that there is
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a color δ ∈ ϕ(y) ∩ ϕ(u) with δ 6= βl1 . We have x ∈ Py(η, δ, ϕ) = Pu(η, δ, ϕ) by Lemma 3.3
since C-fan (y, el0 , x) at y. Recall that Sy = (x, el0 , y, el1 , zl1) is a C-fan at x. The coloring
ϕ1 = ϕ/Pzl1 (η, δ, ϕ) results in δ ∈ ϕ1(zl1) ∩ ϕ1(y), which contradicts Lemma 3.3 because Sy
is still a C-fan at x under ϕ1.

If there exists η ∈ ϕsy(x) ∩ ϕsx(zl1), then there is an edge e′ = xu such that u 6= y,

ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = zl1v such that v 6= x, ϕ(e′′) = η

and d(v) ≤ ∆−d(x)
2

. Obviously, u 6= v, and we have v 6= y by Lemma 3.2. By Lemma
3.4, there are two colors δ1 ∈ ϕ(x) ∩ ϕ(v) and δ2 ∈ ϕ(y) ∩ ϕ(u) with δ2 6= βl1 . We have
Px(δ1, δ2, ϕ) = Py(δ1, δ2, ϕ) by Lemma 3.1 since Vizing fan (x, el0 , y). Do Kempe changes
on Pu(δ1, δ2, ϕ) and Pv(δ1, δ2, ϕ) to get a new coloring ϕ1 such that δ1 ∈ ϕ1(x) ∩ ϕ1(u) and
δ2 ∈ ϕ1(y) ∩ ϕ1(v). Note that Sy = (x, el0 , y, el1 , zl1) is still a C-fan at x under ϕ1. Recolor
the edge e′ with δ1 to get a new coloring ϕ2. Thus η ∈ ϕ2(x) ∩ Cϕ2,x(zl1), which contradicts
Lemma 3.3 because Sy is still a C-fan at x under ϕ2. This completes the proof of Claim 1
for s ≤ 1.

Now we consider the case s ≥ 2. By the minimality of s, V (Sy\{els , zls}) is ϕce-elementary.
Together with the definition of y-generated ce-sequence, we have that for any color γ1 ∈
Cϕ,y(x), no edge in E(Sy) is colored with γ1; for any color γ2, if γ2 ∈ Cϕ,x(y) or γ2 ∈
Cϕ,w(eli )

(zli) with 1 ≤ i ≤ s − 1, where zli is not a repeated vertex, then only the edge el1
or eli+1

in E(Sy) may be colored with γ2; for any color γ3 ∈ Cϕ(z), where z is a repeated
vertex with z = zli = zlj and 1 ≤ i < j ≤ s− 1, only the edge eli+1

or elj+1
in E(Sy) may be

colored with γ3. We will use above facts about Sy without explicit mention. The following
observation will also be used very often.

II. For any color γ1 with γ1 ∈ ϕ(x) ∪ ϕ(y) and γ1 6= βl1 , if color γ2 ∈ ϕ(zli) with 1 ≤
i ≤ s − 1, then we have γ1 6= γ2 and Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) or Py(γ1, γ2, ϕ) =
Pzli (γ1, γ2, ϕ); if γ2 ∈ ϕsw(eli )

(zli) with 1 ≤ i ≤ s − 1, denote by u the vertex and

e′ = zliu the edge such that ϕ(e′) = γ2, and further provide γ1 ∈ ϕ(u), then we have
zli ∈ Px(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ) or zli ∈ Py(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ).

Proof. We first assume γ1 ∈ ϕ(x). Recall that V (Sy\{els , zls}) is ϕce-elementary. We eas-
ily have γ1 6= γ2 and γ2 ∈ ϕ(x). Suppose Px(γ1, γ2, ϕ) 6= Pzli (γ1, γ2, ϕ) (Px(γ1, γ2, ϕ) 6=
Pu(γ1, γ2, ϕ), respectively). For the path Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively), one end-
vertex is zli (u, respectively) and the other endvertex is some vertex z′ 6= x. Note that
z′ /∈ {y, zl1 , . . . , zli−1

} and none of el1 , . . . , eli is colored with γ1. Since zli may be a repeated
vertex in Sy, we consider the following two cases. If zli is not a repeated vertex or zli is a
repeated vertex with zli = zlk and 1 ≤ i < k ≤ s− 1, then none of el1 , . . . , eli is colored with
γ2. Hence, the coloring ϕ1 = ϕ/Pzli (γ1, γ2, ϕ) (ϕ1 = ϕ/Pu(γ1, γ2, ϕ), respectively) results in
a new y-generated ce-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ1(zli) ∩ ϕ1(x)
(γ1 ∈ Cϕ1,w(eli )

(zli) ∩ ϕ1(x), respectively), contradicting the minimality of s.
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If zli is a repeated vertex with zlk = zli and 1 ≤ k < i ≤ s − 1, then only the edge
elk+1

of el1 , . . . , eli may be colored with γ2. We claim that elk+1
is not on Pzli (γ1, γ2, ϕ)

(Pu(γ1, γ2, ϕ), respectively). If ϕ(elk+1
) 6= γ2, then we are done. If ϕ(elk+1

) = γ2 and
elk+1

= xzlk+1
, then elk+1

is on Px(γ1, γ2, ϕ), and we are also done. If ϕ(elk+1
) = γ2,

elk+1
= yzlk+1

and elk+1
is on Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively), then the coloring

ϕ′ = ϕ/Pzli (γ1, γ2, ϕ) (ϕ′ = ϕ/Pu(γ1, γ2, ϕ), respectively) results in a smaller x-generated
ce-sequence (x, el0 , y, elk+1

, zlk+1
, . . . , eli , zli) since ϕ′(elk+1

) = γ1 ∈ ϕ′(x) such that γ1 ∈
ϕ′(zli) ∩ ϕ′(x) (γ1 ∈ Cϕ′,w(eli )

(zli) ∩ ϕ′(x), respectively), contradicting the minimality of
s. Now we have that elk+1

is not on Pzli (γ1, γ2, ϕ) (Pu(γ1, γ2, ϕ), respectively). Let the
coloring ϕ1 = ϕ/Pzli (γ1, γ2, ϕ) (ϕ1 = ϕ/Pu(γ1, γ2, ϕ), respectively), which results in a
new y-generated ce-sequence S ′y = (x, el0 , y, el1 , zl1 , . . . , eli , zli) with γ1 ∈ ϕ1(zli) ∩ ϕ1(x)
(γ1 ∈ Cϕ1,w(eli )

(zli) ∩ ϕ1(x), respectively), also contradicting the minimality of s. This com-
pletes the proof of Px(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) (Px(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ), respectively).
Similarly, we have Py(γ1, γ2, ϕ) = Pzli (γ1, γ2, ϕ) (Py(γ1, γ2, ϕ) = Pu(γ1, γ2, ϕ), respectively)
for γ1 ∈ ϕ(y) and γ1 6= βl1 .

By the minimality of s, we have that either zls is not a repeated vertex or zls is a repeated
vertex with zlk = zls and Cϕ,w(elk )(zlk) ⊂ Cϕ,w(els )(zls), where 1 ≤ k < s. By the minimality
of s again, there exists a color η ∈ Cϕ,w(els )(zls) ∩ (Cϕ,y(x) ∪ Cϕ,x(y) ∪ Cϕ,w(eli )

(zli)) with
1 ≤ i ≤ s − 1. And if zls is a repeated vertex with zlk = zls and 1 ≤ k < s, then we have
η ∈ Cϕ,w(els )(zls)\Cϕ,w(elk )(zlk) = ϕsw(els )(zls)\ϕsw(elk )(zlk). Let α ∈ ϕ(x).

Subclaim 1.1. We may assume that Cϕ,w(els )(zls) ∩ ϕ(x) 6= ∅.

Proof. In order to prove the above subclaim, we consider the following three cases.

Case 1. η ∈ Cϕ,w(els )(zls) ∩ Cϕ,y(x).

If η ∈ Cϕ,w(els )(zls) ∩ ϕ(x), then we are done. Otherwise, first suppose η ∈ ϕ(zls) ∩
ϕsy(x), then there is an edge e′ = xu such that u 6= y, ϕ(e′) = η and d(u) ≤ ∆−d(y)

2
. It

follows from Lemma 3.4 that there is a color δ ∈ ϕ(y) ∩ ϕ(u) with δ 6= βl1 . We have
x ∈ Py(η, δ, ϕ) = Pu(η, δ, ϕ) by Lemma 3.3 since C-fan (y, el0 , x) at y. The coloring ϕ1 =
ϕ/Pzls (η, δ, ϕ) results in δ ∈ ϕ1(zls) and Sy is still a y-generated ce-sequence under ϕ1. We
have Px(α, δ, ϕ1) = Py(α, δ, ϕ1) by Lemma 3.1 since Vizing fan (x, el0 , y) under ϕ1. Then the
coloring ϕ2 = ϕ1/Pzls (α, δ, ϕ1) results in α ∈ ϕ2(zls) ∩ ϕ2(x), which is as desired because Sy
is still a y-generated ce-sequence under ϕ2 and Cϕ2,w(els )(zls) ∩ ϕ2(x) 6= ∅.

Now suppose η ∈ ϕsw(els )(zls) ∩ ϕsy(x). Thus there is an edge e′ = xu such that u 6= y,

ϕ(e′) = η and d(u) ≤ ∆−d(y)
2

, and there is an edge e′′ = zlsv such that v 6= w(els), ϕ(e′′) = η

and d(v) ≤ ∆−d(w(els ))

2
. Obviously, u 6= v. We consider the following two subcases. If

d(x) ≤ d(y), then by Lemma 3.4, there is a color δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). Recolor the
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edge e′ with δ to get a new coloring ϕ1 such that η ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x). Then we are

done because Sy is still a y-generated ce-sequence under ϕ1 and Cϕ1,w(els )(zls) ∩ ϕ1(x) 6= ∅.
If d(x) > d(y), then by Lemma 3.4, there is a color δ ∈ ϕ(y) ∩ ϕ(u) ∩ ϕ(v). We have
Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma 3.1 since Vizing fan (x, el0 , y). Note that el1 is on
Px(α, δ, ϕ) if δ = βl1 . Do Kempe changes on Pu(α, δ, ϕ) and Pv(α, δ, ϕ) to get a new coloring
ϕ2 such that α ∈ ϕ2(x)∩ϕ2(u)∩ϕ2(v). Since Sy is still a y-generated ce-sequence under ϕ2,
we are in the previous subcase in this paragraph with α in place of δ.

Case 2. η ∈ Cϕ,w(els )(zls) ∩ Cϕ,x(y).

If η ∈ ϕ(zls)∩ϕ(y), then we have Px(α, η, ϕ) = Py(α, η, ϕ) by Lemma 3.1 since Vizing fan
(x, el0 , y). Note that el1 is on Px(α, η, ϕ) if η = βl1 . Then the coloring ϕ1 = ϕ/Pzls (α, η, ϕ)
results in α ∈ ϕ1(zls) ∩ ϕ1(x), as desired because Sy is still a y-generated ce-sequence under
ϕ1 and Cϕ1,w(els )(zls) ∩ ϕ1(x) 6= ∅.

If η ∈ ϕ(zls) ∩ ϕsx(y), then there is an edge e′ = yu such that u 6= x, ϕ(e′) = η and

d(u) ≤ ∆−d(x)
2

. By Lemma 3.4, there is a color δ ∈ ϕ(x) ∩ ϕ(u). We have y ∈ Px(η, δ, ϕ) =
Pu(η, δ, ϕ) by Lemma 3.3 since C-fan (x, el0 , y, el1 , zl1) at x. Note that el1 is on Px(η, δ, ϕ) if
η = βl1 . Then the coloring ϕ1 = ϕ/Pzls (η, δ, ϕ) results in δ ∈ ϕ1(zls) ∩ ϕ1(x), as desired.

If η ∈ ϕsw(els )(zls) ∩ ϕ(y), then there is an edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η

and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 3.4 that there is a color δ ∈ ϕ(w(els)) ∩ ϕ(u)

with δ 6= η. We consider the following two subcases. If w(els) = x, then we have Px(η, δ, ϕ) =
Py(η, δ, ϕ) by Lemma 3.1 since Vizing fan (x, el0 , y). Note that el1 is on Px(η, δ, ϕ) if η =
βl1 . Then the coloring ϕ1 = ϕ/Pu(η, δ, ϕ) results in δ ∈ (ϕ1)sx(zls) ∩ ϕ1(x), as desired.
If w(els) = y, then we have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma 3.1. Note that el1 is on
Px(α, δ, ϕ) if δ = βl1 . Then the coloring ϕ2 = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ2(u). We have
Px(α, η, ϕ2) = Py(α, η, ϕ2) by Lemma 3.1 since Vizing fan (x, el0 , y) under ϕ2. Then the
coloring ϕ3 = ϕ2/Pu(α, η, ϕ2) results in α ∈ (ϕ3)sy(zls) ∩ ϕ3(x), as desired.

If η ∈ ϕsw(els )(zls) ∩ ϕsx(y), then there is an edge e′ = yu such that u 6= x, ϕ(e′) = η and

d(u) ≤ ∆−d(x)
2

, and there is an edge e′′ = zlsv such that v 6= w(els), ϕ(e′′) = η and d(v) ≤
∆−d(w(els ))

2
. Obviously, u 6= v. We consider the following two subcases. If d(x) ≤ d(y), then

by Lemma 3.4, there is a color δ ∈ ϕ(x)∩ϕ(u)∩ϕ(v). We have y ∈ Px(η, δ, ϕ) = Pu(η, δ, ϕ) by
Lemma 3.3 since C-fan (x, el0 , y, el1 , zl1) at x. Note that el1 is on Px(η, δ, ϕ) if η = βl1 . Then
the coloring ϕ1 = ϕ/Pv(η, δ, ϕ) results in δ ∈ (ϕ1)sw(els )(zls)∩ϕ1(x), as desired. If d(x) > d(y),

then by Lemma 3.4, there is a color δ ∈ ϕ(y)∩ϕ(u)∩ϕ(v). We have Px(α, δ, ϕ) = Py(α, δ, ϕ)
by Lemma 3.1. Note that el1 is on Px(α, δ, ϕ) if δ = βl1 . Do Kempe changes on Pu(α, δ, ϕ)
and Pv(α, δ, ϕ) to get a new coloring ϕ2 such that α ∈ ϕ2(x) ∩ ϕ2(u) ∩ ϕ2(v). Thus we are
in the previous subcase in this paragraph with α in place of δ.

14



Case 3. η ∈ Cϕ,w(els )(zls) ∩ Cϕ,w(eli )
(zli) for 1 ≤ i ≤ s− 1.

By the minimality of s, we have zls 6= zli . If η ∈ ϕ(zls) ∩ ϕ(zli), then Px(α, η, ϕ) =
Pzli (α, η, ϕ) by the observation II. For the path P = Pzls (α, η, ϕ), one endvertex is zls , the
other endvertex is z′ /∈ V (Sy) and Eϕ,α(P ) ∩ E(Sy) = ∅. In order to do Kempe change on
P , we should discuss the following Eϕ,η(P ) ∩ E(Sy). Let zli = zlj with 1 ≤ i 6= j ≤ s− 1 if
zli is a repeated vertex in Sy. Note that only one of eli+1

, elj+1
may be colored with η. We

consider the following two subcases. If η = βli+1
and eli+1

is on P (or η = βlj+1
and elj+1

is
on P by symmetry), then Eϕ,η(P ) ∩E(Sy) = {eli+1

} and the coloring ϕ1 = ϕ/P results in a
smaller x-generated ce-sequence (x, el0 , y, eli+1

, zli+1
, . . . , els , zls) since ϕ1(eli+1

) = α ∈ ϕ1(x)
such that α ∈ ϕ1(zls) ∩ ϕ1(x), contradicting the minimality of s. If η 6= βli+1

, βlj+1
, or

η = βli+1
and eli+1

is not on P , then Eϕ,η(P )∩E(Sy) = ∅ and the coloring ϕ1 = ϕ/P results
in α ∈ ϕ1(zls) ∩ ϕ1(x), as desired because Sy is still a y-generated ce-sequence under ϕ1.

If η ∈ ϕsw(els )(zls) ∩ ϕ(zli), then there is an edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η

and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 3.4 that there is a color δ ∈ ϕ(w(els)) ∩ ϕ(u)

and δ 6= βl1 . We claim that we may assume ϕ(x) ∩ ϕ(u) 6= ∅. If w(els) = x, then we are
done. Otherwise, consider the case w(els) = y. We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma
3.1. Then the coloring ϕ′ = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ′(x) ∩ ϕ′(u), as desired. Now let
γ ∈ ϕ(x) ∩ ϕ(u). By the observation II, we have Px(γ, η, ϕ) = Pzli (γ, η, ϕ). By the similar
proof of the first subcase of Case 3 (i.e., the case η ∈ ϕ(zls) ∩ ϕ(zli)) with Pu(γ, η, ϕ) in
place of P and γ in place of α, we can obtain the coloring ϕ1 = ϕ/Pu(γ, η, ϕ) such that
γ ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x), as desired.

If η ∈ ϕ(zls) ∩ ϕsw(eli )
(zli), then there is an edge e′ = zliu such that u 6= w(eli), ϕ(e′) = η

and d(u) ≤ ∆−d(w(eli ))

2
. It follows from Lemma 3.4 that there is a color δ ∈ ϕ(w(eli)) ∩ ϕ(u)

with δ 6= βl1 . We claim that we may assume ϕ(x) ∩ ϕ(u) 6= ∅. If w(eli) = x, then we
are done. Otherwise, consider the case w(eli) = y. We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by
Lemma 3.1. Then the coloring ϕ′ = ϕ/Pu(α, δ, ϕ) results in α ∈ ϕ′(x) ∩ ϕ′(u), as desired.
Now let γ ∈ ϕ(x) ∩ ϕ(u). By the observation II, we have Px(γ, η, ϕ) = Pu(γ, η, ϕ). By the
similar proof of the first subcase of Case 3 with γ in place of α, we can obtain the coloring
ϕ1 = ϕ/Pzls (γ, η, ϕ) such that γ ∈ ϕ(zls) ∩ ϕ1(x), as desired.

If η ∈ ϕsw(els )(zls) ∩ ϕsw(eli )
(zli), then there is an edge e′ = zlsu such that u 6= w(els),

ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zliv such that v 6= w(eli),

ϕ(e′′) = η and d(v) ≤ ∆−d(w(eli ))

2
. Obviously, u 6= v. We claim that we may assume

ϕ(x)∩ ϕ(u)∩ ϕ(v) 6= ∅. If d(x) ≤ d(y), then it follows from Lemma 3.4 that there is a color
δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v), and so we are done. If d(x) > d(y), then it follows from Lemma 3.4
that there is a color δ ∈ ϕ(y) ∩ ϕ(u) ∩ ϕ(v). We have Px(α, δ, ϕ) = Py(α, δ, ϕ) by Lemma
3.1. Do Kempe changes on Pu(α, δ, ϕ) and Pv(α, δ, ϕ), and get a new coloring ϕ′ such that
α ∈ ϕ′(x) ∩ ϕ′(u) ∩ ϕ′(v), as desired. Now let γ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). By the observation
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II, we have Px(γ, η, ϕ) = Pu(γ, η, ϕ). By the similar proof of the first subcase of Case 3 with
Pu(γ, η, ϕ) in place of P and γ in place of α, we can obtain the coloring ϕ1 = ϕ/Pu(γ, η, ϕ)
such that γ ∈ (ϕ1)sw(els )(zls) ∩ ϕ1(x), as desired.

Combining the above Cases 1, 2 and 3, we complete the proof of Subclaim 1.1.

Thus we assume that there exists a color η ∈ Cϕ,w(els )(zls) ∩ ϕ(x). We consider the
following two cases.

Case 1. η ∈ ϕ(zls) ∩ ϕ(x).
Suppose w(els) = x. Recolor the edge els with η to get a new coloring ϕ1. Thus βls ∈ ϕ1(x)∩
Cϕ1,w(els−1

)(zls−1), which contradicts the minimality of s. So we assume w(els) = y. Since

d(y) ≤ ∆− 1, there exists a missing color γ with γ 6= βl1 . We have Px(η, γ, ϕ) = Py(η, γ, ϕ)
by Lemma 3.1. Let ϕ2 = ϕ/Pzls (η, γ, ϕ), and we have γ ∈ ϕ2(y) ∩ ϕ2(zls). Recolor the edge
els with γ to get a new coloring ϕ3. Thus βls ∈ ϕ3(y) ∩ Cϕ3,w(els−1

)(zls−1), also contradicting
the minimality of s.

Case 2. η ∈ ϕsw(els )(zls) ∩ ϕ(x).

Suppose βls ∈ ϕ(zls−1). Since η ∈ ϕsw(els )(zls), there is an edge e′ = zlsu such that u 6=
w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
. It follows from Lemma 3.4 that there is a color

δ ∈ ϕ(w(els)) ∩ ϕ(u) with δ 6= η, βl1 . By the observation II, we have Pw(els )(δ, βls , ϕ) =
Pzls−1

(δ, βls , ϕ). Note that els is on Pw(els )(δ, βls , ϕ). Let ϕ1 = ϕ/Pu(δ, βls , ϕ). Hence Sy
is still a y-generated sequence under ϕ1 with βls ∈ ϕ1(u). We claim that we may as-
sume η ∈ ϕ1(w(els)). If w(els) = x, we are done. Otherwise, w(els) = y. We have
Px(η, δ, ϕ1) = Py(η, δ, ϕ1) by Lemma 3.1. Recall δ 6= βl1 . The coloring ϕ′ = ϕ1/Px(η, δ, ϕ)
results in η ∈ ϕ′(y), as desired. Now we assume η ∈ ϕ1(w(els)). We have Pw(els )(η, βls , ϕ1) =
Pu(η, βls , ϕ1) = w(els)zlsu. Then the coloring ϕ2 = ϕ1/Pw(els )(η, βls , ϕ1) results in βls ∈
ϕ2(w(els)) ∩ ϕ2(zls−1), contradicting the minimality of s.

Now we suppose βls ∈ ϕsw(els−1
)(zls−1). In this case, there is an edge e′ = zlsu such that

u 6= w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zls−1v such that

v 6= w(els−1), ϕ(e′′) = βls and d(v) ≤ ∆−d(w(els−1
))

2
. By the condition C3 in Section 2, we

have u 6= v. It follows from Lemma 3.4 that there is a color δ ∈ (ϕ(w(els)) ∪ ϕ(w(els−1))) ∩
ϕ(u) ∩ ϕ(v). We first claim that we may assume that δ ∈ ϕ(w(els)) and δ 6= βl1 . Suppose
δ ∈ ϕ(w(els)) but δ = βl1 . Thus w(els) = y. Recall that max{d(x), d(y)} ≤ ∆ − 1. Hence
there exist γ1 ∈ ϕ(x) with γ1 6= η and γ2 ∈ ϕ(y) with γ2 6= δ = βl1 . By Lemma 3.1, we have
Px(γ1, δ, ϕ) = Py(γ1, δ, ϕ) and Px(γ1, γ2, ϕ) = Py(γ1, γ2, ϕ). Do Kempe changes on Pu(γ1, δ, ϕ)
and Pv(γ1, δ, ϕ) to get a new coloring ϕ′. And then do Kempe changes on Pu(γ1, γ2, ϕ

′) and
Pv(γ1, γ2, ϕ

′) to get a new coloring ϕ′′. Consequently, we have γ2 ∈ ϕ′′(u) ∩ ϕ′′(v), as
desired because γ2 is the desired color instead of δ. Now suppose δ /∈ ϕ(w(els)). Thus we
have w(els) 6= w(els−1) and δ ∈ ϕ(w(els−1)). Since max{d(x), d(y)} ≤ ∆ − 1, there exists
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a missing color γ ∈ ϕ(w(els)) such that γ 6= δ, βl1 . We have Px(γ, δ, ϕ) = Py(γ, δ, ϕ) by
Lemma 3.1. Do Kempe changes on Pu(γ, δ, ϕ) and Pv(γ, δ, ϕ) to get a new coloring ϕ′′′.
Thus γ ∈ ϕ′′′(w(els)) ∩ ϕ′′′(u) ∩ ϕ′′′(v), as desired because γ is the desired color instead of
δ. Now we assume that δ ∈ ϕ(w(els)) and δ 6= βl1 . Then Pw(els )(δ, βls , ϕ) = Pv(δ, βls , ϕ) by
the observation II. Note that els is on Pw(els )(δ, βls , ϕ). Let the coloring ϕ1 = ϕ/Pu(δ, βls , ϕ).
Hence Sy is still a y-generated ce-sequence under ϕ1 with βls ∈ ϕ1(u).

Next we show that we may assume η ∈ ϕ1(w(els)). If w(els) = x, we are done. Oth-
erwise, w(els) = y. We have Px(η, δ, ϕ1) = Py(η, δ, ϕ1) by Lemma 3.1. The coloring
ϕ′1 = ϕ1/Px(η, δ, ϕ) results in η ∈ ϕ′1(y), as desired. Now note that Pw(els )(η, βls , ϕ1) =
Pu(η, βls , ϕ1) = w(els)zlsu. Then the coloring ϕ2 = ϕ1/Pw(els )(η, βls , ϕ1) results in βls ∈
ϕ2(w(els)) ∩ (ϕ2)sw(els−1

)(zls−1), contradicting the minimality of s. This completes the proof

of Case 2.

Combining the above Cases 1 and 2, we complete the proof of Claim 1 for s ≥ 2. Together
with the proof of Claim 1 for s ≤ 1, we prove Claim 1.

Claim 2. The union of vertex sets of any two linear ce-sequences is ϕce-elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ϕ such that there
exist two linear ce-sequences S1 = (x, e, y, el1 , zl1 , . . . , els , zls) and S2 = (x, e, y, el′1 , zl′1 , . . . , el′t ,
zl′t) whose union of vertex sets is not ϕce-elementary with s + t as small as possible, where
s, t ≥ 1. Note that V (S1) and V (S2) are ϕce-elementary by Claim 1. By the minimality
of s + t, zls 6= zl′t and there exists a color η ∈ Cϕ,w(els )(zls) ∩ Cϕ,w(el′t

)(zl′t). We consider the

following three cases. If η ∈ ϕ(zls) ∩ ϕ(zl′t), then zls and zl′t are respectively not repeated
vertices in S1 and S2 since the minimality of s+ t. By the same proof of Claim 2 in Theorem
1.3, we can obtain three endvertices on one Kempe chain, which gives a contradiction.

If η ∈ ϕsw(els )(zls) ∩ ϕ(zl′t) (or η ∈ ϕ(zls) ∩ ϕsw(el′t
)(zl′t) by symmetry), then there is an

edge e′ = zlsu such that u 6= w(els), ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
. It follows from

Lemma 3.4 that there is a color δ ∈ ϕ(w(els)) ∩ ϕ(u). By the definition of linear ce-
sequence in C-e-fan and the minimality of s + t, zls may be a repeated vertex in S1, while
zl′t is not a repeated vertex in S2. Note that ϕ(el1) and ϕ(el′1) are in Cϕ,y(x) ∪ Cϕ,x(y).
(ϕ(el1) and ϕ(el′1) could be the same color.) We consider the following two subcases. If
δ /∈ {ϕ(el1), ϕ(el′1)}, then we have Pw(els )(δ, η, ϕ) = Pu(δ, η, ϕ) by the observation II since
S1 is ϕce-elementary. Similarly, we have Pw(els )(δ, η, ϕ) = Pzl′t

(δ, η, ϕ) by the observation II

since S2 is ϕce-elementary. Thus w(els), zl′t and u are three endvertices of Pw(els )(δ, η, ϕ),
which gives a contradiction. Now we consider the remaining case δ ∈ {ϕ(el1), ϕ(el′1)}. Let
w′(els) ∈ {x, y}\{w(els)}. Recall that max{d(x), d(y)} ≤ ∆ − 1. Hence we can choose a
color γ ∈ ϕ(w′(els)) with γ /∈ {ϕ(el1), ϕ(el′1)}. We have Px(δ, γ, ϕ) = Py(δ, γ, ϕ) by Lemma
3.1. Do Kempe change on Pu(δ, γ, ϕ) to get a new coloring ϕ1. Thus γ ∈ ϕ1(w′(els))∩ϕ1(u).
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Similarly as the subcase above (when δ /∈ {ϕ(el1), ϕ(el′1)}), we have Pw′(els )(γ, η, ϕ1) =
Pzl′t

(γ, η, ϕ1) and Pw′(els )(γ, η, ϕ1) = Pu(γ, η, ϕ1). Thus w′(els), zl′t and u are three endvertices

of Pw′(els )(δ, η, ϕ1), which also gives a contradiction.

If η ∈ ϕsw(els )(zls) ∩ ϕsw(el′t
)(zl′t), then there is an edge e′ = zlsu such that u 6= w(els),

ϕ(e′) = η and d(u) ≤ ∆−d(w(els ))

2
, and there is an edge e′′ = zl′tv such that v 6= w(el′t),

ϕ(e′′) = η and d(v) ≤
∆−d(w(el′t

))

2
. Obviously, u 6= v, and zls and zl′t may be repeated vertices

respectively in S1 and S2. Without loss of generality, we suppose that d(x) ≤ d(y). It
follows from Lemma 3.4 that there is a color δ ∈ ϕ(x) ∩ ϕ(u) ∩ ϕ(v). We consider the
following two subcases. If δ /∈ {ϕ(el1), ϕ(el′1)}, then we have Px(δ, η, ϕ) = Pu(δ, η, ϕ) by
the observation II. Similarly, we have Px(δ, η, ϕ) = Pv(δ, η, ϕ). Thus x, u and v are three
endvertices on one (δ, η)-chain, which is a contradiction. Now we consider the remaining
case δ ∈ {ϕ(el1), ϕ(el′1)}. Recall that max{d(x), d(y)} ≤ ∆ − 1. Hence we can choose a
color γ ∈ ϕ(y) with γ /∈ {ϕ(el1), ϕ(el′1)}. We have Px(δ, γ, ϕ) = Py(δ, γ, ϕ) by Lemma 3.1.
Do Kempe changes on Pu(δ, γ, ϕ) and Pv(δ, γ, ϕ) to get a new coloring ϕ1. Thus we have
γ ∈ ϕ1(y) ∩ ϕ1(u) ∩ ϕ1(v). Thus we are back to the previous subcase with y in place of x
and γ in place of δ. This completes the proof of Claim 2.

Now we are ready to show that V (F ce) is ϕce-elementary. Suppose not. Note that {x, y}
is ϕce-elementary and each linear ce-sequence in F ce contains vertices x and y. There exist
one color η and two distinct vertices zi and zj such that η ∈ Cϕ,w(ei)(zi)∩Cϕ,w(ej)(zj), where
0 ≤ i < j ≤ p and z0 ∈ {x, y}. By the definition of simple C-e-fan, there exist two linear
ce-sequences with zi and zj respectively as the last vertex, which is a contradiction to Claim
1 for i = 0 or a contradiction to Claim 2 for 1 ≤ i ≤ p − 1. This proves that V (F ce) is
ϕce-elementary.

Now we show the “furthermore” part. We assume that F ce is maximal. Let the edge set
Γ = {e1, . . . , ep} and the color set Γ′ =

⋃
z∈V (F ce) Cϕ(z). Note that Cϕ(x), Cϕ(y) and Cϕ(z),

where z ∈ V (F ce)\{x, y}, are disjoint since V (F ce) is ϕce-elementary. We have

p = |Γ| =
∑

z∈V (F ce)\{x,y}

(µF ce(x, z) + µF ce(y, z)) = |Γ∗|. (3)

Now we calculate |Γ∗| in another way. By the definition of C-e-fan, ϕ(ei) ∈ Γ′ for each i ∈ [p].
By the maximality of F ce, for any α ∈ Γ′, α appears exactly once in Γ∗ if α ∈ Cϕ(x)∪Cϕ(y).
Otherwise, α appears exactly twice in Γ∗. Thus we have

|Γ∗| = |Cϕ(x)|+ |Cϕ(y)|+
∑

z∈V (F ce)\{x,y}

2|Cϕ(z)|. (4)

Combining equations (3) and (4), we prove that

|Cϕ(x)|+ |Cϕ(y)| =
∑

z∈V (F ce)\{x,y}

(µF ce(x, z) + µF ce(y, z)− 2|Cϕ(z)|).
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Remark: For Theorem 2.3, the condition C3 is used in the proof of Claim 1 in Case 2.
We believe this condition is necessary but do not have examples to support this claim.
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